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Architecture of idiotypic networks: Percolation and scaling Behavior
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We investigate a model where idiotypésharacterizingd lymphocytes and antibodies of an immune sys-
tem) and anti-idiotypes are represented by complementary bit strings of a given tealipfving for a number
of mismatcheqmatching rules In this model, the vertices of the hypercube in dimengiorepresent the
potential repertoire of idiotypes. A random set(@fith probability p) occupied vertices corresponds to the
expressed repertoire of idiotypes at a given moment. Vertices of this set linked by the above matching rules
build random clusters. We give a structural and statistical characterization of these clusters, or in other words
of the architecture of the idiotypic network. Increasing the probahilipne finds at a criticah a percolation
transition where for the first time a large connected graph occurs with probability 1. Incredsiriger, there
is a second transition above which the repertoire is complete in the sense that any newly introduced idiotype
finds a complementary anti-idiotype. We introduce structural characteristics such as the mass distribution and
the fragmentation rate for random clusters, and determine the scaling behavior of the cluster size distribution
near the percolation transition, including finite size corrections. We find that slightly above the percolation
transition the large connected clustdre central part of the idiotypic netwarkonsists typically of one highly
connected part and a number of weakly connected constituents and coexists with a number of small, isolated
clusters. This is in accordance with the picture of a central and a peripheral part of the idiotypic network and
gives some support to idealized architectures of the central part used in recent dynamical mean field models.
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[. INTRODUCTION tic network topologies can be conceived as an extension of
first approaches to that problem which assumed a Bethe-
B lymphocytes carry on their surface highly specific re-lattice structure. Suggestions of how loops should be added
ceptors, so-called antibodies. If these receptors detedb such structures have been made previo{Bly For this,
complementary structures, the lymphocyte is stimulated t@ur work provides a very natural access.
proliferate and after several generations and differentation Generally, idiotypic networks are supposed to realize a
into plasma cells secretes antibodies of the same specificitjtadeoff between two basic requirements: they should con-
B lymphocytes and antibodies of a given specificity are saidain a great number of small isolated components, but on the
to have a certain idiotype. Complementary structures to aether hand still be able to respond to arbitrary antigens,
idiotype are antigens or other anti-idiotypic antibodies. Be-which means being complete. Small components are thought
tweenB lymphocytes of different idiotypes thus emerges anecessary to store information about previously encountered
functional network of mutual stimulation and inhibition, the antigens[7,9,10. The existence of such components obvi-
idiotypic network[1]. The idiotypic network is supposed to ously demands a low connectivity of the network. With com-
contribute at least partially to the functionality of the im- pleteness, on the other hand, it is assumed that of a great
mune system, e.g., to immunological memory or suppressionumber of antibodies each is able to detect many different
of autoreactive clones. Although guantitative data are veryypes of antigen. Hence the network connectivity should not
hard to access by experiment there are some recent obsenzg too low.
tions that underline the importance of idiotypic interactions ~With regard to the underlying biological problem the one
[2,3]. great—many small cluster situation merits special attention.
New idiotypes are produced in the bone marrow or due tolheoretical immunologists suppose that the idiotypic net-
hypermutation during the proliferation of stimulated lympho- work consists of a large number of small clusters. On the
cytes which introduces a random metadynamics of the repether hand, as a consequence of relatively high connectivi-
ertoire. At a given moment the random network has a certaities, a large component should also be contained within the
architecture. The aim of this paper is to give a statisticaidiotypic network, which is denoted as its central part. This
description of this architecture. Knowledge of the typical ar-great cluster could play an important role in the control of
chitecture of the idiotypic network is crucial for describing autoreactive clonef6,11-13.

the population dynamics of the interactifgy lymphocytes In the following the bit-string model of14] will be ex-
and antibodies, cf.4,5], which is, however, not the subject plained briefly. Basically, antibodies are identified with bit
of this paper. chains of a given lengtd. Thus, there are ®different anti-

Derived from hypotheses of theoretical immunology.  body types. The set of all conceivable antibodies, i.e., the
[1,6]; for a recent review sef7]) we present a statistical potential repertoire, is then represented byi
analysis of bit-string based networks, which shows that this=(iy, . .. ,ig),ij€{0,1}}. Estimating the probable size of
approach is well suited to reproducing reasonable networketworks that can be complete in the above sense shows that
structures. In particular, our considerations show that realisd~32—-36 should be a good value for realistic modas].
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FIG. 1. Comparison of a hyperculieft side with the one- RN

mismatch base grapfnight side that has the same set of vertices

(d=3). Solid lines connect perfectly complementary vertices; FIG. 2. One-mismatch base graphds:4. Same notation as in
dashed lines mean one-mismatch links. Fig. 1.

Antibodies recognize each other if they have complemen- The actual repertoire, i.e., the set of all types of idiotype
tary structures, i.e., if they are represented by perfecu);hat really exist W|th|n_ the body at a given time, is a subset of
complementary bit strings. If there are small deviations fromh€ potential repertoire. There are profound reasons to be-
the exact structural complementarity a matching is still posliéve that the actual repertoire should be distributed ran-
sible, although with lower affinity. This is described by so- domly within the potential repertoir&]. A way of realizing
called matching rules. this is to choose antibodies with a certain probabihity'hen

For example, we imagine that antibodies react if the refhe idiotypic network is represented by the random graph
spective structures are complementary except in one smdffat is composed of all occupied verticentibodies and
region. Using the language of our model the correspondin(y“e'r connecﬂons{pos&ble reactions Clearly, this is a site
bit strings should be inverse except for one bit that belong®ercolation probleni16]. _
to the noncomplementary region. We call this kind of rule a, Percolat|0_n problems on standard Ia_ttlces are far f_rom be-
one-mismatch rule. Two-mismatch rules, which allow reaci"g & new field of research. Percolation on one-mismatch
tions between antibodies that are complementary up to twgraphs, however, has some major differences from ordinary
nonmatching regions, are accordingly defined by connecting€rcolation.
bit strings that are complementary with two exceptions al- Percolation is always connected to an abrupt change of
lowed. Naturally, the multitude of possible rules is not ex-SOme system propertghe standard property is the existence
hausted by mismatch rules. Rules that express matching & & connecting path from the upper to the lower boundary
mutually shifted antibody parts could be conceived as wellOn two-dimensional latticesif the occupation probability
For the sake of simplicity this work is confined to those Passes a certain value, the percolation threshold. This transi-
matching rules that are associated with reactions of highedton becomes sharp in the limit of infinite systems.
affinity, i.e., inversion and one- and two-mismatch rules. On lattices there is no question of how to increase the

Mathematically, the set of all antibody typ&epresented SYyStem size to |nf|n!ty. However, sequences of one-mismatch
by bit strings or vertices of a hypercubtogether with all ~9raphs exhibit relations between small and large systems that
possible reactions between them defines a graph. Thus, W€ essentially different from similar characteristics of lat-

want to call tices, which are created by the multiplication of a unit cell.
Understanding of these distinctions comes from studying the
Gé:({v:(vl, R structure of fully occupied one-mismatch graplisase
o graphs which will be performed in the next section.
€{0,1}},{v connected with w ifv;=w; forall i,] In this paper we investigate the architecture of functional

networks built by constituents of randomly generated char-
acteristics interacting with complementary constituents. Our
motivation, the formulation of the problem, and the interpre-
tation of the results are all in the context of modeling the
immune system using the language and methods of statistical
physics. However, our results are essentially independent of

=1,...d except one position at the mkt (1
the one-mismatch base graph and

G§=({v=(vl, P ,l)d),l)j

e{0,1},{v connected withwifuizwj forall i,] the spec_ific immunological_interpretation_ and could be of
broader interest. The situation of interacting randomly gen-
=1,...d except two positions at the mst (2)  erated complementary constituents is quite general. For ex-

ample, think of chemical reaction®rigin of life), ecosys-

the two-mismatch base graph. To obtain a better impressiotems, or social networks.

of one-mismatch graphs they can be compared to hypercubes Generally, the concept of the paper is as follows. In Sec.
of the same dimension. Looking, e.g., on hypercubes of ditl topological properties of base graphs are studied. Section
mensiond=3, edges of one-mismatch graphs are repreill gives an analysis of the underlying percolation problem,
sented by all space and side diagonals. This, together withwhich then leads, together with applications of random graph
picture of a one-mismatch graph in dimension 4 is shown irtheory from Sec. IV and a study of intrinsic structures of
Figs. 1 and 2, respectively. great clusters in Sec. V, to conclusions about parameter re-
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gimes, in which bit-string model induced random graphs re-
semble idiotypic networks. In the Appendix another method
of calculating thresholds via the renormalization of small §
cells is discussed.

II. STRUCTURE OF THE BASE GRAPH FOR THE ONE-
MISMATCH RULE

mass (normalize:

The above definition of matching rules allows an easy
calculation of distances between vertices ®@}. Let i,j
e G} be verticesdy, their Hamming distancé.e., the num-
ber of different bits between themand

distance s

dg(i.j)= inf I(w), ©) FIG. 3. Normalized mass in the dimensionless distafrem
pathsw in Gy _ an arbitrary origin in evend=34) and odd §=35) dimensions.
connectingi and | Points have been connected to guide the eyes.

wherel(w) denotes the length of a patf) a metric. Then it

holds that if Differences in the overall structure of graphs in odd and
even dimensiond become even more obvious if the number
dy for d, even of links connecting vertices of the same Bgtis considered.
dy<<d/2, dg= Using Eq.(4), a somewhat lengthy but straightforward cal-
H 67 \d,+1 fordy odd, g Eg.(4) gy g

culation shows that connected vertices in the same dist&nce

d,—di2, dg=di2, fordeven, @ from the originv occur in

d evenonly for s=D,,,=d/2,
d—dy+1 ford—d, even Y max

> =
dy=>df2,  do {d—dH for d—dy, odd, d odd only for s=D = (d+1)/2 or 7)

which shows that the maximum distanbg,,(d) between
vertices is roughly one-half of that on ordinary hypercubes.
This is essentially due to the inversion rule. Furthermore, itanalogously, the number of links that connect vertice€gf

should be noted thdd,,(d) does not change when increas- with vertices belonging td&s, ; may be computed td+ 1
ing the dimension by 1 from oddd&2n+1) to even ¢ — s for S<D a1

=2n+2) values. _ As a consequence there must exist loops of even as well
~To obtain additional information about the toplogy we as of odd length. Moreover, all short loops with length less
distinguish vertices corresponding to their distasc® an  thand must be everisince only loops comprising links be-

arbitrarily chosen origin, e.g.v=0=(0,...,0), whose  tween vertices in the same distance from any loop element
choice is arbitrary due to the specific construction rule ofcan be of an odd length

base graphs. We denote the set of vertices with distance An important property of standard Systems in perco|ation
dg(v,i) fromov by theory is that the smaller system is always contained within
the larger one. For one-mismatch graphs, however, this is not
possible. Ledd;<d, be dimensions oGél andGéz, respec-
Applying Eq. (4) it is possible to compute the number of tively. If Gg were contained iGg_ it would follow directly
vertices|E| belonging toE¢ (mass distributionby simple thathl12 should have uneven loops with length less thlan

combinatorics to This gives a contradiction sind8, contains no odd loops

S=D o 1.

Es={i e G}|dg(v,i)=s}. (5)

d d+1 smaller thand,, whereasd;<d, by assumption.
(d ) if dG:T Summarizing these results we state that percolation on
c—1 one-mismatch graphs differs from standard percolation. A
|Esl= : (6) crucial point in this distinction is the way global system
d+1 it d 9 properties change if the system size approaches infinity.
dg 62 Nevertheless, methods of percolation theory can be applied

to this kind of problem. Further, by choosing an appropriate

A visualization of Eq.(6) in Fig. 3 shows a major differ- majority rule renormalization group procedures can be ex-
ence between odd and even dimensidnsGenerally,|E| tended to one-mismatch graptsee Appendix A

grows monotonically with increasing distance. For odd di- To the best of our present knowledge percolation prob-

mensions, however, the number of vertices with maximalems on graphs with similar properties have not been dealt

distanceD o from v is substantially smaller than that with with. Even percolation on regular hypercubes has had rela-
distanceD 1. tively little attention in the physical literatufe 7].
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recently in the context of networks of RNA secondary struc-
tures[22,23.

0.00025 |-
0.0002 - 7 IV. SCALING LAWS AND BETHE APPROXIMATION

0.00015 -

p(ICl)

y A common method of analyzing percolation problems is
0.0001 L the introduction of perimeter polynomiaBBc . Using the
’ standard notation we define

0.00005 -

0

p(ICh=p/°l > (1—p)Sred=plCID (1-p), (8)
StreC)

0 20 40 60 80 100
cluster size ICI .
where p(|C|) denotes the probability that a vertex on the

FIG. 4. Cluster size distribution depending on the occupationygse graph belongs to a cluster of s|i@. Sred C) Means
probability p=0.1,0.2,0.3 for base graphs in eight dimensions. Theyhe free surface, i.e., the set of all unoccupied vertices of the
histogram was taken over 1@onfigurations. base graph that are adjacent to vertice€of

Generally, there are few problems that allow the explicit
lll. CLUSTER SIZE DISTRIBUTION calculation of D¢ for arbitrary cluster siz¢C|. Notwith-
standing, it is always possible to compubgc for small

‘values of|C|. This provides a basis for the application of

ing base graphs we consider now vertices of those graphg,jes expansion techniques. We investigate the structure of
occupied with a given probabilitp. The set of all occupied g1l clusters up to siZ€S|=5 on one-mismatch graphs. As

verticesI” together with all bonds, that connect two vertices 5 result for large base graphd>5) we find the following
belonging tol" forms a random graph. In terms of percola- perimeter polynomials for one-mismatch graphs:

tion theory a maximal set of connected vertices is called a

cluster. Di(q)=q°"1, 9

What is the probability that an arbitrarily chosen vertex o
belongs to a cluster of siZ&|? This question has already Da(q)=(d+1)g~, (10
been addressed i®,10] where three major regimes of the
system have been identifi¢see also the numerical results in D4(q)= g(dJr 1)dg*2, (11)
Fig. 4).

(i) The first typical situation arises for small values of the
occupation probabilityp. Then only small clusteréwhose D4(q)=q4d4(2(d—1)d(d+1)+ d(d+1)
individual size does not make up a finite fraction of the 2
whole systemare expected to appear. 2

(ii) On increasingy and approaching infinite dimensions, +—(d—1)d(d+1)
a sharp transitiofin the following denoted as the percolation 39
transition to a one great cluster—many small clusters regime c
was founq. At the percolation transition sqme.characterlstlcs Ds(q)= =g %(d—1)d(d+1)
obey scaling laws. These and an approximation to compute 2
percolation thresholds will be dealt with in Sec. IV.

The one great—many small clusters situation deserves spe-
cial attention(cf. Sec. ). The great cluster could play an
important role in the control of autoreactive clones. To fulfill
that purpose it is believed to have a certain internal structureshereq=1—p.

(see[12,13,18; for experimental data s€d9]), which will In the following we show that in the limit of high dimen-
be discussed in more detail in Sec. VI. Thus, as stated akions random graphs on one-mismatch graphs for small val-
ready in[9,10], the simple one-parametric bit-chain model ues ofp are very similar to random graphs on Bethe lattices
exhibits an interesting similarity to the idiotypic network.  with the same coordination number. Arguments of this kind

(iii) Finally, if the occupation probability is further in- have already been applied to percolation on hypercubic lat-
creased, a state will be reached where random graphs consigtes [24,25 making use of the fact that loops in random
of one connected component only . Relying on some genergraphs on sparsely occupied high dimensional lattices are
results of the theory of random graphs it can be shown thainfrequent. Indeed, the first terms of a high dimension expan-
this indeed marks a secorth the limit of infinite systemps  sion on a hypercubic lattice of dimensidrare given by the
sharp transition which we call the denseness transition. Iexact values of the percolation threshold for the Bethe lattice
Sec. V these considerations are recalled and discussed wittith coordination numbed.
reference to the completeness of the immune system. A closer look at the perimeter polynomial8)—(13) sup-

Exactly the same two thresholds were considered earligoorts the hypothesis that the situation is quite similar for
for a different class of random graph20,21,26 and more  one-mismatch-graphs. For example, the contribution from

Having collected some simple properties of the underly

; (12

d—2+ 1(d 1)
q

: (13

L (d—2)
o> 12¢°
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FIG. 5. Cluster size distribution 087, andG1, at the percola- FIG. 6. lllustration of finite size scaling laws for the two-
tion thresholds. The simulation data are plotted on doubly logarithmismatch graphstO and Giz. Data sets are plotted on doubly
mic scales. logarithmic scales.

loops top(4)=p*D,4(q) is given byp'°P(4)=p*q*?~*d(d  Systems investigated, very large clusters behave in a different
+1)/2. Obviously, the relative weight of this term vanishesWay from clusters of “standard” size. The transition be-

in the high dimension limit. Additional support comes from tween the laws applying to these separate cases is marked by
the observation that the one-mismatch base-g@jtcon- |CI*, which in turn depends on the extent of the system.
tains hypercubes up to dimensiah-1. To elucidate this Analogous properties can be observed for base graphs de-

propeny we considr the folwing example i-a. we Med by oier matching s, Figue 6 lstiates scaing
construct a hypercube of dimension 3, applying the one- ©) [of gEqp(ls)] gt consequgncpe o

mismatch rule allowing for a mismatch in one of the, lastVa/ues ofp=pg¢ , :
three bits. Starting at the origin (0,0,0,0) this yields adding supplementary edges distances between vertices be-

(1,1,1,0), (1,0,1,1), (1,1,0,1). Iteration gives the new verti-COMe smaller than in one-mismatch graphs. This gives an
ces (0,1,0,1), (0,0,1,1), (0,1,1,0), and finally (1,0,0,0) explanation for the fact that typical siz¢S|* are substan-
These eight vertices are connected by matching rules likd@lly smaller than those examined on one-mismatch graphs
those of a three-dimensional hypercube. Then follow the arith the same choice d.

guments of24,25. Furthermore, it can be seen in Fig. 6 that the scaling law
Consequently the percolation threshold for one-mismatcﬁl6) applies well even to very small clusters. It is useful to
graphs can be approximated to define a cluster size dependent exponegt by
(1= In[p(|C[+1)/p(IC]]
pe =1/, (14 o=~ (17)

In[(|C[+1)/[C[]

whereas for two-mismatch graphs ) ) )
Evaluating the perimeter polynomial®)—(13), values of

pg2): 1[d+d(d+1)/2]. (15) 7|c| for small |C| can be derived. Thus we obtain a sequence
{7|c/} Which should approach the true value offor large
Corrections to Eqs(14) and (15) are of orderO(d~2) and |C
0O(d™3), respectively. From considerations of Sec. | we find As a matter of fact Eq(16) changes t@(|C|)~|C| " in
that the number of links connecting verticesBg with ver-  the limit of infinite systems. Performing the limits— in
tices inEg, ; decreases with increasing distarc&@ hus, we  Egs.(9)—(13) and(17), we observe thaffa obeys
conclude that the corrections p§*) must be positive.
Typically for percolation problems, certain system char- 0 _
acteristics obey scaling laws at the percolation threshold. T|C‘_In(1+ 1C|)
This kind of law reflects the statistical self-similarity of clus-
ters on different length scales in that parameter regime. Figwhich by comparison of Eq17) with Eq. (18) and solving
ure 5 displays simulation results for the cluster size distributhe recursion relation implies the law
tions obtained for one-mismatch graphs of dimensions 10

—|C|+1, (19

-|C C|-2
and 14. Both data sets can be well described by the finite size o(|c))= e c| (19
scaling ansatz ICl!
p(|ChH=|C|~"F(|C|/|C|*), (16)  for the cluster size distribution. Equatioil8) leads tor

=3/2 for large clusters. The value=3/2 thus computed is
where the functiorF(x) is nearly a constant fox<1 and in accord with the exact result on the Bethe lattice.
will be more rapidly declining than any power law for argu-  Since we investigate a model for a biological system our
mentsx> 1. Equation(16) should apply for clusters that are main interest is devoted to large, yet finite systems. In the
neither too small nor too large. Due to the limited size of thesequencd 7} our best approximation for the real value of
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' ; =5/2p5q°4~7(d—1)d(d+1) to p(4) and p(5), respec-
T C T 7 tively. Making use of Eqs(12) and(13) we then find
T ' [ _P(4)—ptioona) 1

. T, ' 4 p(4) T 1+ 1/4d-1)[1+1/3q)]

M%«;j@\\ 1 (22)
10'4 &%{,@t and
+* p(4)— ptailed 4—Ioo;{5) 1 ptailed 4—Ioo;{ 5)
1 10 100 fs= p(4) +§ p(4)
cluster size ICI
FIG. 7. Simulation results for the fragmentation réten Gi, =1— f L . (23
depending on the cluster siZ€| at the numerically determined S 1+1/g+(d—2)[1+q+1/(129%)]

p.~0.112. Data are plotted on doubly logarithmic scales. Fitting a
power law (dashed ling yields \~0.12 to be compared with  Finally, insertingp~p{?=d~*+0(d"?) a rough estimate

~0.11 from Eq.(24). for N is 4= (In f5—In f,)/In(5/4), which gives

7 is 74. A comparison between values efcomputed from 1 393 _, 4029120 _, 3

r~7, and exponents obtained by evaluating numerical )\4(d)%ln(5/4) X 10 + Ex 10F d™“+0(d™) .
data for small systems suggests that the approximation in- (24)
volved becomes rapidly more accurate if the system size is

increased. Hence id=32 we rely on, and find 7~1.5, Ford=10 we have\ ~0.11 in very good agreement with
which gives a result that also supports the previous assumpne numerically obtained value 0.18ee Fig. J. For d=32
tion. we find\~0.03, already very close #%o=0 which holds for

Subsequently it was our aim to find a quantity that givesgethe-Jattices. Thus the value>0 measured on finite di-
an overall estimation of deviations between random graphg,ensional random graphs on one-mismatch base graphs—
on one-mismatch graphs from those on Bethe lattices Ofyhich is caused by a small number of loops—should quan-
equal coordination number. For this purpose it appears apify the deviation from random graphs on Bethe lattices. It
propriate to investigate the results of an edge ellmlnatloqSlppears that the occupation probability at the percolation

procedure which computes the number of bonds belonging tghreshold is still small enough to apply the Bethe approxima-
loops. Similar procedures have very recently been applied tgq.

lattices[27]. _ o _ Yet, random graphs gi, are not exactly Bethe-like and

The above aim is achieved by individually removing ev- contain a certain fraction of loops. Otherwise it would be
ery edge of every cluster and calculating the number of conmpossible to distinguish subclusters according to their con-
nected components of the resulting graph. An edge is said tQectivity within any considerable connected component.
be fractioning if two components are obtained by cutting th'SThis, however, is likely to be necessary, to explain the role
edge. Clearly, only edges that belong to loops are not fracss the central part of idiotypic networks propefl¥3].

tioning. _ o Further investigations concerning the structure of great
Then the ratio of fractioning bondf§C) to the overall  ,sters will be made in Sec. V.

number of bond$(C) of a clusterC, f(C)/b(C), is some
indication of the importance of loops within the structure of
C. Distinguishing clusters according to their sif€| we
computed the mean fractioning ratio

V. DENSITY THRESHOLD AND THE COMPLETENESS
OF THE IDIOTYPIC NETWORK

Hitherto, our main interest was devoted to the question of
fic;=(f(C)/b(C"))icr|=c|- (200 the occupation probability at which a great cluster starts to
exist. However ifp, is further increased it is also imaginable
Except for very small clusters with trivial structure we ex- that a situation occurs where the whole system consists of

pect a finite size scaling law one great cluster only. We call this the question about the
A . connectivity property of random graphs.
fic;=IC|~*F(|Cl/|C*]) (21 In the theory of random graphs some general results that

address related problems have been derived for so-called se-

for the fragmentation ratéat the percolation threshold, the quences of configuration spad@?,23 and earlier for a dif-
validity of which is illustrated in Fig. 7. ferent general class of random graphg20,21]. It can be

Similar to 7/¢|, a cluster size dependent exponang shown that the sequence of one-mismatch base grabljs
may be defined. The only 4- and 5-clusters containing nontulfills all requirements of these configuration spa¢ag];
fragmenting bonds are the 4-lodpo fractioning bongland  because of its rather technical nature the proof will be omit-
the 4-loop with a tail (1/5 of all bonds fractionihgvhich  ted here.
give the contributions p#'°R4) and p'aled4loops) General results 0f22,23 can be applied here showing
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that for infinite systems there exists a threshold

pconn:l_ Ilm |Gé|7l/)/d (25) J
d—x \/\

(4 being the coordination numbewith the property that

almost all random graphs are connected gor pgon, While

the set of all connected random graphs has measure zero for FiG. 8. Visualization of different cluster structures. The circles
P<Pconn- Moreover, for sequences of configuration spaces isymbolize strongly connected subclusténsaps. Left hand side:
holds that both the connectivity and the density thresholdihe cluster consists of several weakly connected heaps. Right hand
i.e. the threshold for the property that there is no nonoccuside: the cluster contains one heap only.

pied site without occupied neighbors on the base graph, co-

incide. Using Eq(25) we find In the next section our interest will be shifted toward the
intrinsic structure of great clusters. Further conclusions about
(C%)?m: p&?nse: 1/2 (26) biologically relevant parameter regimes can then be drawn.
in the case of one-mismatch graphs and VI. INTRINSIC STRUCTURE OF GREAT CLUSTERS
@ _p@ _g 27 Summarizing the results for percolation on mismatch
conn™ Fdense graphs from Secs. -1V, two phase transitions have been
_ found to occur. The ranges belgw (since there is no great
for two-mismatch graphs. clustey and abovep .., (since there is only one great cluster

The density of random graphs in our model can be di-gre of no interest for the biological background of the model.
reCtIy translated into biOIOgical terms. Since antibodies andrhe one great C|uster_many small clusters situation between
antigens are represented by the same sets of bit chains, the two, however, is likely to fulfill some requirements for
property that there is no free site without an occupied neighidiotypic networks(see Sec. )l In this section further inves-
bor means that every antigen is sure to encounter a complggations into the network structure within this parameter re-
mentary antibody. Hence the idiotypic network is able t0gime will be made.
respond to any antigen. This is the completeness aXigm Insights into the structure of a great cluster can be ob-
for the immune system. tained from the mass distribution of this clustdi(s)={v

Nevertheless, it is somewhat difficult to reconcile the de-. Cld(v,c)=s}, i.e., the information on how many vertices
mands for denseness of random graphs and the occurrencegfye 3 certain distancefrom a starting point. Due to the
small clusters at the same time. However, it seems unlikel)équa”ty of all starting points we define
that completeness should be understood in this strict way.

Rather it appears to be a better solution to consider the fact 1
that evolution has most likely driven the idiotypic network M(s)= iq
into such an arrangement that it is able to respond only to

variations of actually exis_tir)g af?“gens- Thus we argue thaEmd consider the mean value bf(s) calculated over all
the completeness of the idiotypic network does not exac“%lusters whose size exceeds a minimum value<@s 2
match the density of random graphs, but requires only thieior the metricd(-,-) there are two distinct choices, viz.,

probability for the density of the corresponding random . ) . i
metrics defined by Eq(3) allowing paths inG=Gy, i.e.,
graph to be somewhat below 1. So random graphs can sti (-.-)=dg, and such restricting paths ®© itself, i.e., d

comprise small clusters and be complete, (-,-)=dc. Sincedc>dg we confine our investigations to
Another paradox arises if two-mismatch graphs are con}’ '/~ ~C* ~CT -G )
P grap d(-,-)=dc, which provides a better “resolution.” In the

sidered. For those the connectivity and percolation thrEShfollowin we will discuss some tvpical cluster compositions
olds p!* andp{?), fall together. How then could small clus- g yp P

S to obtain a survey of possible conclusions from mass distri-
ters and a separate large component coexist if all rando

raphs are connected? Yet, for the case of finite systems it Isutions about cluster structures.
grap ’ ' Y Three different situations can be imagir{éor (i) and(iii )

clear thatp{(d)<p{{(d), i.e., a great cluster has to be .. Fig. &
fprmed first, before it can encompass its competing smal? (i) A cluster could consist of some loosely bound high
rivals. connectivity regions(heapy, whose vertices are distin-

Consequently, for the case of two-mismatch graphs alsg isheq by a great number of connections with each other.

the biologically.interesting regime is yvell defineq_. _For finite Other vertices are bound with relatively few links. Clearly,
systems there is a range of occupation probabilig¥(d) strong connectivity within heaps means that vertices belong-

<p<p{Gh{d), where all requirements are met. Because bothng to them have nearly the same distance from all other

probabilitiesp{®(d) and p{Z){(d) are converging to zero in vertices. Thus, the presence of many heaps should result in a
the limit d— it follows that the extent of this range great number of local extrema. On the other hand, loosely

Ip®(d)—p) (d)| will also become very small for large bound vertices will smooth the mass distribution, i.e., reduce

systems. the sharpness of extrema.

> M(s) (28)

ceC
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FIG. 10. Mean valu€t) of the resulting large fragments after
FIG. 9. Simulation results for the normalized mass distributionapplication of the edge-elimination procedure Cbi depending on
on G for varying probabiliiesp=0.1,0.15,0.2,0.3,0.4 and the re- the occupation probabilitp.
sults of Eq.(6) for p=1.0. In order to make results for differepts
comparable on the same scale masses have been divided by

. ) . tJT'ﬁus, the number of such componenthould allow one to
cluster siz¢C|. Points have been connected to guide the eyes.

distinguish between the situatioGg—(iii ).

Figure 10 shows simulation data for the mean vékjeof
the resulting nontrivial parts after edge elimination depend-
ing onp. The distribution is marked by one maximum, which

. . is again a consequence of two competing tendencies. For
occupation probabilitiep < peon, (for which the whole base g5y yajyes ofp clusters are generally not doubly con-

graph has not been covered yete expect a COMProMiSe o104 byt increasing leads to a larger proportion of ver-
between the declining probability that a vertex of that clustet; o that belong to loops. On the other hand, there is a ten-
has distance from the originv and the increasing number of dency for loops to get connected by loops, i.e., separate
vertices with increasing. Consequently, the mass distribu- 4,1y connected cluster components grow together. Thus,
tion should exhibit one maximum. For large>peonn Mass  for arge p almost every cluster will consist of one doubly
distributions can simply be derived by multiplying B8 by - nnected component only.

Results of Fig. 10 show also that the maximum is reached
slightly above the percolation threshagdd. Then the num-
Ber of doubly connected partsapidly declines until it as-

(ii) A cluster could contain no distinguishing parts at all.
From Eq.(6) we know that up tos=D,,,, the number of
vertices is increasing with increasing distarse~or small

(iii) As a special case @) a cluster could be made of one
heap and a certain fraction of loosely bound vertices. The

up to two maxima, paused by the h(_a_aped verte_x Concentr'i‘l'mptotically approaches=1 for p—1. We argue that this
tion and the competing tendencieee(ii)], respectively, are  hopavior is caused by one great doubly connected compo-

likely to occur. The sharpness of both maxima will dependnent which occurs first for somg=p, and then gradually

on the fraction of loosely bound vertices. Thus, in the case Of, ., norates all other doubly connected parts. In principle,
a large proportion of those vertices both extrema could b

®hese results do also apply to two-mismatch grases Fig.
smoothed to just one broad maximum. PRYY gralg g

. . i . 11).
Figure 9 shows simulation results for the normalized mass Comparing this with the scenario described above of clus-
distribution for different values gb. Clearly, all distributions

' . ter structures, we can thus state that there is a range of values
are marke_d b_y only_one maximum, whos_e_ s_harpness N5t p=p. Where (iii) applies, i.e., clusters are made of one
creases with increasing values pf In the vicinity of the

density threshold clusters are already stretched over the
whole extent of the base graph. Hence, ot 0.4, slightly .
below pgon=0.5, the curve of the mass distribution looks — ™* s
similar to the exactly known distribution for the fully occu- :
pied base-graph given by E(f); see also Fig. 3.

More interestingly, for smalp’s in the vicinity of the
percolation threshold relatively broad maxima occur, which
could be an indication of cluster structures as described in
(iii ).

To prove the validity of this hypothesis we have applied
the edge-elimination algorithitsee Sec. )Ito great clusters.
As a slight extension of the described procedure all fraction-
ing edges are removed, thus splitting a clustemto the
sequence of its doubly connected components, or heaps in FIG. 11. Mean valuét) of the resulting great fragments for the
the above sensep(l, R ,Ct). Obviously, vertices belong- two-mismatch graph§2, Gg andG%0 depending omp. Except for a
ing to doubly connected components are distinguished bghift toward smaller values g, the results are similar to those on
their many connections in comparison to other verticesone-mismatch graphs.

T3
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great doubly connected componéiricluding several small parametric bit-string model produces a nontrivial seemingly
ones and a set of other loosely bound vertices. Accordingly,realistic network topology, without assumiagpriori distin-
within this range ofp we define two subsets of great clusters guished vertex groups.
C, namely, the great doubly connected compor@stC(?)
and the complementary sBt=C—B. APPENDIX A: RENORMALIZATION GROUP APPROACH

As already discussed in Sec. |, the central part of idiotypic
networks(corresponding to great cluste® should contain
strongly and weakly connected distinguished subsets. Fro
the previous analysis it becomes clear that there is a choi
of the only parametep where bit-string models can exactly
reproduce such a situation.

In this Appendix we present a method to approximate the
connectivity threshold for one-mismatch graphs. Extension
K f the ideas of renormalization group theory could also be
gpplicable to more complicated cases that do not allow an
exact treatment.

Our approach is based on the idea of the renormalization
of small cells[33] which employs the self-similarity of the

VIl. CONCLUSIONS system on different length scales at the percolation threshold.
. ) o ) o A condition to apply this procedure is that an appropriate

We investigated statistical properties of a bit-string-basegyrouping of sites on the original lattice leads to a renormal-
model for idiotypic networks and compared typical architec-jze( |attice with the same symmetry properties as the original
tures of the network thus defined with axioms and hypothsne. Here, treating not a real space lattice but functional
eses for idiotypic networks from theoretical biology. Before networks, we adapt the idea of the renormalization group
introducing randomness we undertook an analysis of the Uiheory in the following way. We find a transformatioR
derlying base graphs to show a major difference from stangnich, by grouping of vertices, leads from the one-mismatch
dard percolation problems based on the way the size of thg,qe graprG},” in dimensiond+2 to a grath(G,Lz)

system is increased. that is equi 2 :
. . . quivalent to the base gra}ﬁiﬁ in dimensiond,
Subsequently the expressed antibody repertoire was 'de%(Gé+z):Gé thus allowing a systematic reduction of the

tified with graphs, created by randomly occupying a match degrees of freedom.

ing rule defined base structufbase graphs Concepts of . . i
percolation theory were applied in order to determine the If a threshold property appropriately defme_d for finite sys-
: tems, namelyp..,{d), converges to a certain value fdr
percolation threshold. \
—oo, differences betweepy and py_, must be small and

The immune system is a very large, yet finite system. . . ) S erd
Consequently, finite size corrections have to be taken in an_wII disappear in the limit of infinite systems. Consequently,

count. Series expansion techniques allowed the calculatio'rg a grouplr:g O:j vertlc;zs g) sufp?rllvertlces (;n a gr@buelldt§
of two critical exponentgfor finite systems and in the limit a renormalized grapiR(G) of the same type, percolation

d—o0) that characterize the scaling behavior. A regime ofthresholds on both graphs will be the same. Thus, we replace

values for the parametgr>p. has been found where ran- the term symmetryas it is applied to latticgsby equiva-
dom graphs consist of many small clusters and one greé?ncy of graphs. .
connected component. For choiges p. our model repro- We encode an arbitrary vertex of the base gr@[ét;z by

duces the peripheral/central part concept for idiotypic net{APo,b1) whereAis a bit cPain of lengtid andb,, b, are
works. single bits. Ele-_ry vertex o_ﬁ‘;diz b(ﬂongs_to a unigue 4-loop
Translation of the notation of the completeness of idio-{(A,bg,b1),(A,bg,by1),(A,bg,b1),(A,bg,by)} connected by
typic networks into the language of graph theory allowed theone-mismatch links. The renormalizatidR replaces this
determination of an upper threshqige,sefor the occurrence  4-loop by the super verte¢d) on R(G3, ,) [of course the

of the many small clusters—one great cluster situation. Furghpice of @) leads to identical resullsif two verticesA and
thermore, relying on general results of the theory of randong gre connected by an inversigane-mismatchlink on G

graphs(for so-called sequences of configuration SpageS o \ertices of the corresponding 4-loops @, , are con-
calculated thein this case coincidehthresholds for the den- nected by four inversioione-mismatchlinks t+020 see Fig.
Sity (Pgensd @nd connectivity Peonn properties. 12. ’

2

Furthermore, we developed techniques to obtain addi- - : 1

. . > We thus define a renormalized graRi{G m d
tional information about the structure of great clusters. Ana- et alized g d+2) COMPOse

. of the vertices and edges explained above. It follows directly
lyzing random graphs fqo= p. great clusters can be decom-

posed into two subsets of vertices with different binding O OU construction thak(Gg, ,) is equivalent tdGy .
properties, namely, groups of doubly connected vertices .TO deSfcrlbe random graplh§ we apply the foIIowmg ma-
(backbongand loosely linked verticegeripheral part of the Jority rule: a supervertex OG_d Is considered as occ_upled i
great cluster at Iezist two connegted _vert|cgs of the gorre'_spondlng 4-loop
Thus, bit-string models are suited to describe a hierarch@" Gd-2 aré occupied, i.e., this 4-loop is said to percolate.
of connectivity levels, which really existing idiotypic net- On the basis of this rule we obtain
works are also expected to exhibit. Our results support to " An2(1 _ )2 31_ 4
some extent idealized architectures used in a mean-field type pr=A4p*(1=p)"+api(1-p)+p" (A1)
model to describe the dynamics of the central part of thavherep’ denotes thérenormalized probability that vertices
immune systeni13]. Unlike other model approachg8,28—  of (G) are occupied if vertices 08 were chosen with prob-
31] for topologies of idiotypic networks, our simple few ability p.
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(B,1,0) (B,0,0) leads to exact results in the limit of very large cells, is to
Fo-—- ’ summarize some elementary cells to one large cell of zize
/N I (B) . L . .
_ /o ’ . This large cell will then be occupied if all elementary cells
(B,1,1) # == —--9%(B,0,1) R : are occupied and connected, i.e., are said to percolate. Since
Do e —_— “renormalization faults” are essentially due to cell surface
L(A,0,1):  (A,1,1) . .
e—__Ll_o : effects improvements produced by the above method ema-
) L (;) nate from the declining surface-volume ratio of large cells.
_ A ¢ For one-mismatch graphs it holds, however, that the surface
(4,0,0) (A,1,0) size of a cells(z) depends logarithmically om, viz. s(z)
~d+1-log,z leading to only slight improvements with in-

FIG. 12. lllustration of the renormalization procedure applied tocreasingz.

a pair of connected 4-loops dBy, , leading to a pair of linked Using larger elementary cells consisting of two coupled
supervertices oGé. If d4(B,A)=0 the dotted edges correspond to 4-loops we obtain

inversion links, ide(B,K):l to one-mismatch links.

Calculating fixed points of Eq(Al) we obtainp* =0, (p')?=p°+8p’q+24p°g°+32p°q°+ 12p%q*, (A2)
(3"\/5)/2, and 1. Thus, as the only unstable solutiopdri]
we havep* =(3— /5)/2 as a first approximation for the con- and using four coupled 4-loops yields
nectivity threshold.

Here one could pose the question whether only 4-loops |
are suited as a renormalization cell. Indeed, it is also possible (P )*=p'®+16p'°q+ 112p**+ 448 "%q° + 11200 *

to summarize successive renormalization steps in to a single +1792M05+ 177602%6 + 1008%q7 + 18008q8
large one, and ordinary hypercubes of even dimension G @ & ®a
<d form suitable cells as well. On the other hand, condens- (A3)

ing odd dimensional hypercubes to supervertices does not
lead to renormalized graphB(G) that are equivalent to wheregq=1—p. As fixed pointsp’=p of Egs. (A2) and
other base graphs of the sequer{@},}. Altogether, this (A3) we determined numericallp~0.41 andp~0.39, re-
seems to be an effect of differences between even- and oddpectively. The difference of both values fropy,,~=0.5
dimensional base graplisee Sec. may be a consequence of the above mentioned slow conver-
Of course, renormalizing small cells entails some approxi-gence.
mation. Grouping together vertices and applying a majority More interestingly, our renormalization procedure of re-
rule to occupy the renormalized vertices, situations can arisplacing hypercubes of dimensidrby supervertices is appli-
where clusters on the original lattice are cut or new clustersable without modifications to ordinary hypercubes as well.
are formed 33]. This gives an additional argument that the connectivity
There are different approaches to improve the approximathresholds of both sequences of graphs are equal, which can
tions involved. One possibility suggested [B4], which  also be verified by evaluating E5).
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