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Architecture of idiotypic networks: Percolation and scaling Behavior

Markus Brede and Ulrich Behn
Institut für Theoretische Physik, Universita¨t Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany

~Received 7 June 2000; revised manuscript received 12 January 2001; published 20 June 2001!

We investigate a model where idiotypes~characterizingB lymphocytes and antibodies of an immune sys-
tem! and anti-idiotypes are represented by complementary bit strings of a given lengthd allowing for a number
of mismatches~matching rules!. In this model, the vertices of the hypercube in dimensiond represent the
potential repertoire of idiotypes. A random set of~with probability p) occupied vertices corresponds to the
expressed repertoire of idiotypes at a given moment. Vertices of this set linked by the above matching rules
build random clusters. We give a structural and statistical characterization of these clusters, or in other words
of the architecture of the idiotypic network. Increasing the probabilityp one finds at a criticalp a percolation
transition where for the first time a large connected graph occurs with probability 1. Increasingp further, there
is a second transition above which the repertoire is complete in the sense that any newly introduced idiotype
finds a complementary anti-idiotype. We introduce structural characteristics such as the mass distribution and
the fragmentation rate for random clusters, and determine the scaling behavior of the cluster size distribution
near the percolation transition, including finite size corrections. We find that slightly above the percolation
transition the large connected cluster~the central part of the idiotypic network! consists typically of one highly
connected part and a number of weakly connected constituents and coexists with a number of small, isolated
clusters. This is in accordance with the picture of a central and a peripheral part of the idiotypic network and
gives some support to idealized architectures of the central part used in recent dynamical mean field models.

DOI: 10.1103/PhysRevE.64.011908 PACS number~s!: 87.18.2h, 64.60.Ak, 05.10.Ln, 02.70.Rr
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I. INTRODUCTION

B lymphocytes carry on their surface highly specific r
ceptors, so-called antibodies. If these receptors de
complementary structures, the lymphocyte is stimulated
proliferate and after several generations and differenta
into plasma cells secretes antibodies of the same specifi
B lymphocytes and antibodies of a given specificity are s
to have a certain idiotype. Complementary structures to
idiotype are antigens or other anti-idiotypic antibodies. B
tweenB lymphocytes of different idiotypes thus emerges
functional network of mutual stimulation and inhibition, th
idiotypic network@1#. The idiotypic network is supposed t
contribute at least partially to the functionality of the im
mune system, e.g., to immunological memory or suppres
of autoreactive clones. Although quantitative data are v
hard to access by experiment there are some recent obs
tions that underline the importance of idiotypic interactio
@2,3#.

New idiotypes are produced in the bone marrow or due
hypermutation during the proliferation of stimulated lymph
cytes which introduces a random metadynamics of the
ertoire. At a given moment the random network has a cer
architecture. The aim of this paper is to give a statisti
description of this architecture. Knowledge of the typical
chitecture of the idiotypic network is crucial for describin
the population dynamics of the interactingB lymphocytes
and antibodies, cf.@4,5#, which is, however, not the subjec
of this paper.

Derived from hypotheses of theoretical immunology~cf.
@1,6#; for a recent review see@7#! we present a statistica
analysis of bit-string based networks, which shows that
approach is well suited to reproducing reasonable netw
structures. In particular, our considerations show that rea
1063-651X/2001/64~1!/011908~11!/$20.00 64 0119
-
ct

to
n
ty.
d
n
-

n
y
va-

o

p-
in
l
-

is
rk
s-

tic network topologies can be conceived as an extension
first approaches to that problem which assumed a Be
lattice structure. Suggestions of how loops should be ad
to such structures have been made previously@8#. For this,
our work provides a very natural access.

Generally, idiotypic networks are supposed to realize
tradeoff between two basic requirements: they should c
tain a great number of small isolated components, but on
other hand still be able to respond to arbitrary antige
which means being complete. Small components are thou
necessary to store information about previously encounte
antigens@7,9,10#. The existence of such components ob
ously demands a low connectivity of the network. With com
pleteness, on the other hand, it is assumed that of a g
number of antibodies each is able to detect many differ
types of antigen. Hence the network connectivity should
be too low.

With regard to the underlying biological problem the o
great–many small cluster situation merits special attent
Theoretical immunologists suppose that the idiotypic n
work consists of a large number of small clusters. On
other hand, as a consequence of relatively high connec
ties, a large component should also be contained within
idiotypic network, which is denoted as its central part. Th
great cluster could play an important role in the control
autoreactive clones@6,11–13#.

In the following the bit-string model of@14# will be ex-
plained briefly. Basically, antibodies are identified with b
chains of a given lengthd. Thus, there are 2d different anti-
body types. The set of all conceivable antibodies, i.e.,
potential repertoire, is then represented by$ i
5( i 1 , . . . ,i d),i jP$0,1%%. Estimating the probable size o
networks that can be complete in the above sense shows
d'32–36 should be a good value for realistic models@15#.
©2001 The American Physical Society08-1
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MARKUS BREDE AND ULRICH BEHN PHYSICAL REVIEW E64 011908
Antibodies recognize each other if they have complem
tary structures, i.e., if they are represented by perfe
complementary bit strings. If there are small deviations fr
the exact structural complementarity a matching is still p
sible, although with lower affinity. This is described by s
called matching rules.

For example, we imagine that antibodies react if the
spective structures are complementary except in one s
region. Using the language of our model the correspond
bit strings should be inverse except for one bit that belo
to the noncomplementary region. We call this kind of rule
one-mismatch rule. Two-mismatch rules, which allow re
tions between antibodies that are complementary up to
nonmatching regions, are accordingly defined by connec
bit strings that are complementary with two exceptions
lowed. Naturally, the multitude of possible rules is not e
hausted by mismatch rules. Rules that express matchin
mutually shifted antibody parts could be conceived as w
For the sake of simplicity this work is confined to tho
matching rules that are associated with reactions of hig
affinity, i.e., inversion and one- and two-mismatch rules.

Mathematically, the set of all antibody types~represented
by bit strings or vertices of a hypercube! together with all
possible reactions between them defines a graph. Thus
want to call

Gd
15„$v5~v1 , . . . ,vd!,v j

P$0,1%%,$v connected with w ifv i5w̄j for all i , j

51, . . . ,d except one position at the most%… ~1!

the one-mismatch base graph and

Gd
25„$v5~v1 , . . . ,vd!,v j

P$0,1%%,$v connected with w ifv i5wj for all i , j

51, . . . ,d except two positions at the most%… ~2!

the two-mismatch base graph. To obtain a better impres
of one-mismatch graphs they can be compared to hyperc
of the same dimension. Looking, e.g., on hypercubes of
mension d53, edges of one-mismatch graphs are rep
sented by all space and side diagonals. This, together w
picture of a one-mismatch graph in dimension 4 is shown
Figs. 1 and 2, respectively.

FIG. 1. Comparison of a hypercube~left side! with the one-
mismatch base graph~right side! that has the same set of vertice
(d53). Solid lines connect perfectly complementary vertic
dashed lines mean one-mismatch links.
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The actual repertoire, i.e., the set of all types of idioty
that really exist within the body at a given time, is a subse
the potential repertoire. There are profound reasons to
lieve that the actual repertoire should be distributed r
domly within the potential repertoire@7#. A way of realizing
this is to choose antibodies with a certain probabilityp. Then
the idiotypic network is represented by the random gra
that is composed of all occupied vertices~antibodies! and
their connections~possible reactions!. Clearly, this is a site
percolation problem@16#.

Percolation problems on standard lattices are far from
ing a new field of research. Percolation on one-misma
graphs, however, has some major differences from ordin
percolation.

Percolation is always connected to an abrupt change
some system property~the standard property is the existen
of a connecting path from the upper to the lower bound
on two-dimensional lattices! if the occupation probability
passes a certain value, the percolation threshold. This tra
tion becomes sharp in the limit of infinite systems.

On lattices there is no question of how to increase
system size to infinity. However, sequences of one-misma
graphs exhibit relations between small and large systems
are essentially different from similar characteristics of l
tices, which are created by the multiplication of a unit ce
Understanding of these distinctions comes from studying
structure of fully occupied one-mismatch graphs~base
graphs! which will be performed in the next section.

In this paper we investigate the architecture of functio
networks built by constituents of randomly generated ch
acteristics interacting with complementary constituents. O
motivation, the formulation of the problem, and the interp
tation of the results are all in the context of modeling t
immune system using the language and methods of statis
physics. However, our results are essentially independen
the specific immunological interpretation and could be
broader interest. The situation of interacting randomly g
erated complementary constituents is quite general. For
ample, think of chemical reactions~origin of life!, ecosys-
tems, or social networks.

Generally, the concept of the paper is as follows. In S
II topological properties of base graphs are studied. Sec
III gives an analysis of the underlying percolation proble
which then leads, together with applications of random gra
theory from Sec. IV and a study of intrinsic structures
great clusters in Sec. V, to conclusions about parameter

; FIG. 2. One-mismatch base graph ind54. Same notation as in
Fig. 1.
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ARCHITECTURE OF IDIOTYPIC NETWORKS: . . . PHYSICAL REVIEW E64 011908
gimes, in which bit-string model induced random graphs
semble idiotypic networks. In the Appendix another meth
of calculating thresholds via the renormalization of sm
cells is discussed.

II. STRUCTURE OF THE BASE GRAPH FOR THE ONE-
MISMATCH RULE

The above definition of matching rules allows an ea
calculation of distances between vertices ofGd

1 . Let i , j
PGd

1 be vertices,dH their Hamming distance~i.e., the num-
ber of different bits between them!, and

dG~ i , j !5 inf
paths w in Gd

1

connecting i and j

l ~w!, ~3!

wherel (w) denotes the length of a pathw, a metric. Then it
holds that if

dH,d/2, dG5H dH for dH even

dH11 for dH odd ,

dH5d/2, dG5d/2, for d even, ~4!

dH.d/2, dG5H d2dH11 for d2dH even

d2dH for d2dH odd,

which shows that the maximum distanceDmax(d) between
vertices is roughly one-half of that on ordinary hypercub
This is essentially due to the inversion rule. Furthermore
should be noted thatDmax(d) does not change when increa
ing the dimension by 1 from odd (d52n11) to even (d
52n12) values.

To obtain additional information about the toplogy w
distinguish vertices corresponding to their distances to an
arbitrarily chosen origin, e.g.,v505(0, . . . ,0), whose
choice is arbitrary due to the specific construction rule
base graphs. We denote the set of vertices with dista
dG(v,i ) from v by

Es5$ i PGd
1udG~v,i !5s%. ~5!

Applying Eq. ~4! it is possible to compute the number
verticesuEsu belonging toEs ~mass distribution! by simple
combinatorics to

uEsu55 S d

dG21D if dG5
d11

2

S d11

dG
D if dG<

d

2

. ~6!

A visualization of Eq.~6! in Fig. 3 shows a major differ-
ence between odd and even dimensionsd. Generally,uEsu
grows monotonically with increasing distance. For odd
mensions, however, the number of vertices with maxim
distanceDmax from v is substantially smaller than that wit
distanceDmax21.
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Differences in the overall structure of graphs in odd a
even dimensionsd become even more obvious if the numb
of links connecting vertices of the same setEs is considered.
Using Eq.~4!, a somewhat lengthy but straightforward ca
culation shows that connected vertices in the same distans
from the originv occur in

d even only for s5Dmax5d/2,

d odd only for s5Dmax5~d11!/2 or ~7!

s5Dmax21.

Analogously, the number of links that connect vertices ofEs
with vertices belonging toEs11 may be computed tod11
2s for s,Dmax21.

As a consequence there must exist loops of even as
as of odd length. Moreover, all short loops with length le
thand must be even~since only loops comprising links be
tween vertices in the same distance from any loop elem
can be of an odd length!.

An important property of standard systems in percolat
theory is that the smaller system is always contained wit
the larger one. For one-mismatch graphs, however, this is
possible. Letd1,d2 be dimensions ofGd1

1 andGd2

1 , respec-

tively. If Gd1

1 were contained inGd2

1 it would follow directly

that Gd2

1 should have uneven loops with length less thand1.

This gives a contradiction sinceGd2

1 contains no odd loops

smaller thand2, whereasd1,d2 by assumption.
Summarizing these results we state that percolation

one-mismatch graphs differs from standard percolation
crucial point in this distinction is the way global syste
properties change if the system size approaches infin
Nevertheless, methods of percolation theory can be app
to this kind of problem. Further, by choosing an appropri
majority rule renormalization group procedures can be
tended to one-mismatch graphs~see Appendix A!.

To the best of our present knowledge percolation pr
lems on graphs with similar properties have not been d
with. Even percolation on regular hypercubes has had r
tively little attention in the physical literature@17#.

FIG. 3. Normalized mass in the dimensionless distances from
an arbitrary origin in even (d534) and odd (d535) dimensions.
Points have been connected to guide the eyes.
8-3
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MARKUS BREDE AND ULRICH BEHN PHYSICAL REVIEW E64 011908
III. CLUSTER SIZE DISTRIBUTION

Having collected some simple properties of the unde
ing base graphs we consider now vertices of those gra
occupied with a given probabilityp. The set of all occupied
verticesG together with all bonds, that connect two vertic
belonging toG forms a random graph. In terms of percol
tion theory a maximal set of connected vertices is calle
cluster.

What is the probability that an arbitrarily chosen vert
belongs to a cluster of sizeuCu? This question has alread
been addressed in@9,10# where three major regimes of th
system have been identified~see also the numerical results
Fig. 4!.

~i! The first typical situation arises for small values of t
occupation probabilityp. Then only small clusters~whose
individual size does not make up a finite fraction of t
whole system! are expected to appear.

~ii ! On increasingp and approaching infinite dimension
a sharp transition~in the following denoted as the percolatio
transition! to a one great cluster–many small clusters regi
was found. At the percolation transition some characteris
obey scaling laws. These and an approximation to comp
percolation thresholds will be dealt with in Sec. IV.

The one great–many small clusters situation deserves
cial attention~cf. Sec. I!. The great cluster could play a
important role in the control of autoreactive clones. To ful
that purpose it is believed to have a certain internal struc
~see@12,13,18#; for experimental data see@19#!, which will
be discussed in more detail in Sec. VI. Thus, as stated
ready in @9,10#, the simple one-parametric bit-chain mod
exhibits an interesting similarity to the idiotypic network.

~iii ! Finally, if the occupation probability is further in
creased, a state will be reached where random graphs co
of one connected component only . Relying on some gen
results of the theory of random graphs it can be shown
this indeed marks a second~in the limit of infinite systems!
sharp transition which we call the denseness transition
Sec. V these considerations are recalled and discussed
reference to the completeness of the immune system.

Exactly the same two thresholds were considered ea
for a different class of random graphs@20,21,26# and more

FIG. 4. Cluster size distribution depending on the occupat
probability p50.1,0.2,0.3 for base graphs in eight dimensions. T
histogram was taken over 105 configurations.
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recently in the context of networks of RNA secondary stru
tures@22,23#.

IV. SCALING LAWS AND BETHE APPROXIMATION

A common method of analyzing percolation problems
the introduction of perimeter polynomialsD uCu . Using the
standard notation we define

p~ uCu!5puCu (
Sfree(C)

~12p! uSfree(C)u5puCuD uCu~12p!, ~8!

where p(uCu) denotes the probability that a vertex on th
base graph belongs to a cluster of sizeuCu. Sfree(C) means
the free surface, i.e., the set of all unoccupied vertices of
base graph that are adjacent to vertices ofC.

Generally, there are few problems that allow the expli
calculation ofD uCu for arbitrary cluster sizeuCu. Notwith-
standing, it is always possible to computeD uCu for small
values of uCu. This provides a basis for the application
series expansion techniques. We investigate the structur
small clusters up to sizeuCu55 on one-mismatch graphs. A
a result for large base graphs (d.5) we find the following
perimeter polynomials for one-mismatch graphs:

D1~q!5qd11, ~9!

D2~q!5~d11!q2d, ~10!

D3~q!5
3

2
~d11!dq3d22, ~11!

D4~q!5q4d24S 2~d21!d~d11!1
d~d11!

2

1
2

3q
~d21!d~d11! D , ~12!

D5~q!5
5

2
q5d26~d21!d~d11!S d221

1

q
~d21!

1
1

q2
1

1

12q3
~d22!D , ~13!

whereq512p.
In the following we show that in the limit of high dimen

sions random graphs on one-mismatch graphs for small
ues ofp are very similar to random graphs on Bethe lattic
with the same coordination number. Arguments of this ki
have already been applied to percolation on hypercubic
tices @24,25# making use of the fact that loops in rando
graphs on sparsely occupied high dimensional lattices
infrequent. Indeed, the first terms of a high dimension exp
sion on a hypercubic lattice of dimensiond are given by the
exact values of the percolation threshold for the Bethe lat
with coordination numberd.

A closer look at the perimeter polynomials~9!–~13! sup-
ports the hypothesis that the situation is quite similar
one-mismatch-graphs. For example, the contribution fr

n
e

8-4
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ARCHITECTURE OF IDIOTYPIC NETWORKS: . . . PHYSICAL REVIEW E64 011908
loops top(4)5p4D4(q) is given byploop(4)5p4q4d24d(d
11)/2. Obviously, the relative weight of this term vanish
in the high dimension limit. Additional support comes fro
the observation that the one-mismatch base-graphGd

1 con-
tains hypercubes up to dimensiond21. To elucidate this
property we consider the following example ind54. We
construct a hypercube of dimension 3, applying the o
mismatch rule allowing for a mismatch in one of the, la
three bits. Starting at the origin (0,0,0,0) this yiel
(1,1,1,0), (1,0,1,1), (1,1,0,1). Iteration gives the new ve
ces (0,1,0,1), (0,0,1,1), (0,1,1,0), and finally (1,0,0,
These eight vertices are connected by matching rules
those of a three-dimensional hypercube. Then follow the
guments of@24,25#.

Consequently the percolation threshold for one-misma
graphs can be approximated to

pc
(1)51/d, ~14!

whereas for two-mismatch graphs

pc
(2)51/@d1d~d11!/2#. ~15!

Corrections to Eqs.~14! and ~15! are of orderO(d22) and
O(d23), respectively. From considerations of Sec. I we fi
that the number of links connecting vertices inEs with ver-
tices inEs11 decreases with increasing distances. Thus, we
conclude that the corrections topc

(1) must be positive.
Typically for percolation problems, certain system ch

acteristics obey scaling laws at the percolation thresh
This kind of law reflects the statistical self-similarity of clu
ters on different length scales in that parameter regime.
ure 5 displays simulation results for the cluster size distri
tions obtained for one-mismatch graphs of dimensions
and 14. Both data sets can be well described by the finite
scaling ansatz

p~ uCu!5uCu2tF~ uCu/uCu* !, ~16!

where the functionF(x) is nearly a constant forx!1 and
will be more rapidly declining than any power law for arg
mentsx@1. Equation~16! should apply for clusters that ar
neither too small nor too large. Due to the limited size of t

FIG. 5. Cluster size distribution onG10
1 andG14

1 at the percola-
tion thresholds. The simulation data are plotted on doubly logar
mic scales.
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systems investigated, very large clusters behave in a diffe
way from clusters of ‘‘standard’’ size. The transition b
tween the laws applying to these separate cases is marke
uCu* , which in turn depends on the extent of the system.

Analogous properties can be observed for base graphs
fined by other matching rules. Figure 6 illustrates scal
behavior of random graphs on two-mismatch base graphs
values ofp5pc

(2) @cf. Eq. ~15!# As a natural consequence o
adding supplementary edges distances between vertice
come smaller than in one-mismatch graphs. This gives
explanation for the fact that typical sizesuCu* are substan-
tially smaller than those examined on one-mismatch gra
with the same choice ofd.

Furthermore, it can be seen in Fig. 6 that the scaling
~16! applies well even to very small clusters. It is useful
define a cluster size dependent exponentt uCu by

t uCu52
ln@p~ uCu11!/p~ uCu!#

ln@~ uCu11!/uCu#
. ~17!

Evaluating the perimeter polynomials~9!–~13!, values of
t uCu for small uCu can be derived. Thus we obtain a sequen
$t uCu% which should approach the true value oft for large
uCu.

As a matter of fact Eq.~16! changes top(uCu);uCu2t in
the limit of infinite systems. Performing the limitsd→` in
Eqs.~9!–~13! and ~17!, we observe thatt uCu

` obeys

t uCu
` 5

1

ln~111/uCu!
2uCu11, ~18!

which by comparison of Eq.~17! with Eq. ~18! and solving
the recursion relation implies the law

p~ uCu!5
e2uCuuCu uCu22

uCu!
~19!

for the cluster size distribution. Equation~18! leads tot
53/2 for large clusters. The valuet53/2 thus computed is
in accord with the exact result on the Bethe lattice.

Since we investigate a model for a biological system o
main interest is devoted to large, yet finite systems. In
sequence$t uCu% our best approximation for the real value

-
FIG. 6. Illustration of finite size scaling laws for the two

mismatch graphsG10
2 and G12

2 . Data sets are plotted on doubl
logarithmic scales.
8-5
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MARKUS BREDE AND ULRICH BEHN PHYSICAL REVIEW E64 011908
t is t4. A comparison between values oft computed from
t't4 and exponentst obtained by evaluating numerica
data for small systems suggests that the approximation
volved becomes rapidly more accurate if the system siz
increased. Hence ind532 we rely ont4 and find t'1.5,
which gives a result that also supports the previous assu
tion.

Subsequently it was our aim to find a quantity that giv
an overall estimation of deviations between random gra
on one-mismatch graphs from those on Bethe lattices
equal coordination number. For this purpose it appears
propriate to investigate the results of an edge eliminat
procedure which computes the number of bonds belongin
loops. Similar procedures have very recently been applie
lattices@27#.

The above aim is achieved by individually removing e
ery edge of every cluster and calculating the number of c
nected components of the resulting graph. An edge is sa
be fractioning if two components are obtained by cutting t
edge. Clearly, only edges that belong to loops are not f
tioning.

Then the ratio of fractioning bondsf (C) to the overall
number of bondsb(C) of a clusterC, f (C)/b(C), is some
indication of the importance of loops within the structure
C. Distinguishing clusters according to their sizeuCu we
computed the mean fractioning ratio

f uCu5^ f ~C8!/b~C8!& uC8u5uCu . ~20!

Except for very small clusters with trivial structure we e
pect a finite size scaling law

f uCu5uCu2lF̂~ uCu/uĈ* u! ~21!

for the fragmentation ratef at the percolation threshold, th
validity of which is illustrated in Fig. 7.

Similar to t uCu , a cluster size dependent exponentl uCu
may be defined. The only 4- and 5-clusters containing n
fragmenting bonds are the 4-loop~no fractioning bond! and
the 4-loop with a tail (1/5 of all bonds fractioning! which
give the contributions p4-loop(4) and ptailed 4-loop(5)

FIG. 7. Simulation results for the fragmentation ratef on G10
1

depending on the cluster sizeuCu at the numerically determined
pc'0.112. Data are plotted on doubly logarithmic scales. Fittin
power law ~dashed line! yields l'0.12 to be compared withl
'0.11 from Eq.~24!.
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55/2p5q5d27(d21)d(d11) to p(4) and p(5), respec-
tively. Making use of Eqs.~12! and ~13! we then find

f 45
p~4!2p4-loop~4!

p~4!
5

1

111/4~d21!@111/~3q!#
~22!

and

f 55
p~4!2ptailed 4-loop~5!

p~4!
1

1

5

ptailed 4-loop~5!

p~4!

512
4

5

1

111/q1~d22!@11q11/~12q2!#
. ~23!

Finally, insertingp'pc
(1)5d211O(d22) a rough estimate

for l is l45(ln f52ln f4)/ln(5/4), which gives

l4~d!'
1

ln~5/4! S 393

23103
d211

4 029 120

83106
d221O~d23!D .

~24!

For d510 we havel'0.11 in very good agreement wit
the numerically obtained value 0.12~see Fig. 7!. For d532
we findl'0.03, already very close tol50 which holds for
Bethe-lattices. Thus the valuel.0 measured on finite di-
mensional random graphs on one-mismatch base grap
which is caused by a small number of loops—should qu
tify the deviation from random graphs on Bethe lattices.
appears that the occupation probability at the percola
threshold is still small enough to apply the Bethe approxim
tion.

Yet, random graphs atpc are not exactly Bethe-like and
contain a certain fraction of loops. Otherwise it would
impossible to distinguish subclusters according to their c
nectivity within any considerable connected compone
This, however, is likely to be necessary, to explain the r
of the central part of idiotypic networks properly@13#.

Further investigations concerning the structure of gr
clusters will be made in Sec. V.

V. DENSITY THRESHOLD AND THE COMPLETENESS
OF THE IDIOTYPIC NETWORK

Hitherto, our main interest was devoted to the question
the occupation probability at which a great cluster starts
exist. However ifp, is further increased it is also imaginab
that a situation occurs where the whole system consist
one great cluster only. We call this the question about
connectivity property of random graphs.

In the theory of random graphs some general results
address related problems have been derived for so-called
quences of configuration spaces@22,23# and earlier for a dif-
ferent general class of random graphs in@20,21#. It can be
shown that the sequence of one-mismatch base graphs$Gd

1%
fulfills all requirements of these configuration spaces@32#;
because of its rather technical nature the proof will be om
ted here.

General results of@22,23# can be applied here showin

a

8-6
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that for infinite systems there exists a threshold

pconn512 lim
d→`

uGd
1u21/gd ~25!

(gd being the coordination number! with the property that
almost all random graphs are connected forp.pconn while
the set of all connected random graphs has measure zer
p,pconn. Moreover, for sequences of configuration space
holds that both the connectivity and the density thresho
i.e. the threshold for the property that there is no nonoc
pied site without occupied neighbors on the base graph,
incide. Using Eq.~25! we find

pconn
(1) 5pdense

(1) 51/2 ~26!

in the case of one-mismatch graphs and

pconn
(2) 5pdense

(2) 50 ~27!

for two-mismatch graphs.
The density of random graphs in our model can be

rectly translated into biological terms. Since antibodies a
antigens are represented by the same sets of bit chains
property that there is no free site without an occupied nei
bor means that every antigen is sure to encounter a com
mentary antibody. Hence the idiotypic network is able
respond to any antigen. This is the completeness axiom@7#
for the immune system.

Nevertheless, it is somewhat difficult to reconcile the d
mands for denseness of random graphs and the occurren
small clusters at the same time. However, it seems unlik
that completeness should be understood in this strict w
Rather it appears to be a better solution to consider the
that evolution has most likely driven the idiotypic netwo
into such an arrangement that it is able to respond only
variations of actually existing antigens. Thus we argue t
the completeness of the idiotypic network does not exa
match the density of random graphs, but requires only
probability for the density of the corresponding rando
graph to be somewhat below 1. So random graphs can
comprise small clusters and be complete.

Another paradox arises if two-mismatch graphs are c
sidered. For those the connectivity and percolation thre
olds pc

(2) andpconn
(2) fall together. How then could small clus

ters and a separate large component coexist if all rand
graphs are connected? Yet, for the case of finite systems
clear thatpc

(2)(d),pconn
(2) (d), i.e., a great cluster has to b

formed first, before it can encompass its competing sm
rivals.

Consequently, for the case of two-mismatch graphs a
the biologically interesting regime is well defined. For fini
systems there is a range of occupation probabilitiespc

(2)(d)
,p,pconn

(2) (d), where all requirements are met. Because b
probabilitiespc

(2)(d) and pconn
(2) (d) are converging to zero in

the limit d→` it follows that the extent of this rang
upc

(2)(d)2pconn
(2) (d)u will also become very small for large

systems.
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In the next section our interest will be shifted toward t
intrinsic structure of great clusters. Further conclusions ab
biologically relevant parameter regimes can then be draw

VI. INTRINSIC STRUCTURE OF GREAT CLUSTERS

Summarizing the results for percolation on mismat
graphs from Secs. I–IV, two phase transitions have b
found to occur. The ranges belowpc ~since there is no grea
cluster! and abovepconn~since there is only one great cluste!
are of no interest for the biological background of the mod
The one great cluster–many small clusters situation betw
the two, however, is likely to fulfill some requirements fo
idiotypic networks~see Sec. II!. In this section further inves-
tigations into the network structure within this parameter
gime will be made.

Insights into the structure of a great cluster can be
tained from the mass distribution of this clusterMc(s)5$v
PCud(v,c)5s%, i.e., the information on how many vertice
have a certain distances from a starting pointc. Due to the
equality of all starting pointsc we define

M ~s!5
1

uCu (
cPC

Mc~s! ~28!

and consider the mean value ofM (s) calculated over all
clusters whose size exceeds a minimum value 0.53p32d.
For the metricsd(•,•) there are two distinct choices, viz
metrics defined by Eq.~3! allowing paths inG5Gd

1 , i.e.,
d(•,•)5dG , and such restricting paths toC itself, i.e., d
(• ,•)5dC . SincedC.dG we confine our investigations to
d(•,•)5dC , which provides a better ‘‘resolution.’’ In the
following we will discuss some typical cluster compositio
to obtain a survey of possible conclusions from mass dis
butions about cluster structures.

Three different situations can be imagined@for ~i! and~iii !
see Fig. 8#.

~i! A cluster could consist of some loosely bound hi
connectivity regions~heaps!, whose vertices are distin
guished by a great number of connections with each ot
Other vertices are bound with relatively few links. Clear
strong connectivity within heaps means that vertices belo
ing to them have nearly the same distance from all ot
vertices. Thus, the presence of many heaps should result
great number of local extrema. On the other hand, loos
bound vertices will smooth the mass distribution, i.e., redu
the sharpness of extrema.

FIG. 8. Visualization of different cluster structures. The circl
symbolize strongly connected subclusters~heaps!. Left hand side:
the cluster consists of several weakly connected heaps. Right
side: the cluster contains one heap only.
8-7
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MARKUS BREDE AND ULRICH BEHN PHYSICAL REVIEW E64 011908
~ii ! A cluster could contain no distinguishing parts at a
From Eq. ~6! we know that up tos5Dmax the number of
vertices is increasing with increasing distances. For small
occupation probabilitiesp,pconn ~for which the whole base
graph has not been covered yet! we expect a compromis
between the declining probability that a vertex of that clus
has distances from the originv and the increasing number o
vertices with increasings. Consequently, the mass distrib
tion should exhibit one maximum. For largep.pconn mass
distributions can simply be derived by multiplying Eq.~6! by
p.

~iii ! As a special case of~i! a cluster could be made of on
heap and a certain fraction of loosely bound vertices. T
up to two maxima, caused by the heaped vertex concen
tion and the competing tendencies@see~ii !#, respectively, are
likely to occur. The sharpness of both maxima will depe
on the fraction of loosely bound vertices. Thus, in the case
a large proportion of those vertices both extrema could
smoothed to just one broad maximum.

Figure 9 shows simulation results for the normalized m
distribution for different values ofp. Clearly, all distributions
are marked by only one maximum, whose sharpness
creases with increasing values ofp. In the vicinity of the
density threshold clusters are already stretched over
whole extent of the base graph. Hence, forp50.4, slightly
below pconn50.5, the curve of the mass distribution loo
similar to the exactly known distribution for the fully occu
pied base-graph given by Eq.~6!; see also Fig. 3.

More interestingly, for smallp’s in the vicinity of the
percolation threshold relatively broad maxima occur, wh
could be an indication of cluster structures as describe
~iii !.

To prove the validity of this hypothesis we have appli
the edge-elimination algorithm~see Sec. II! to great clusters.
As a slight extension of the described procedure all fracti
ing edges are removed, thus splitting a clusterC into the
sequence of its doubly connected components, or heap
the above sense, (C1 , . . . ,Ct). Obviously, vertices belong
ing to doubly connected components are distinguished
their many connections in comparison to other vertic

FIG. 9. Simulation results for the normalized mass distribut
on G9

1 for varying probabilitiesp50.1,0.15,0.2,0.3,0.4 and the re
sults of Eq.~6! for p51.0. In order to make results for differentp’s
comparable on the same scale masses have been divided b
cluster sizeuCu. Points have been connected to guide the eyes.
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Thus, the number of such componentst should allow one to
distinguish between the situations~i!–~iii !.

Figure 10 shows simulation data for the mean value^t& of
the resulting nontrivial parts after edge elimination depe
ing onp. The distribution is marked by one maximum, whic
is again a consequence of two competing tendencies.
small values ofp clusters are generally not doubly con
nected, but increasingp leads to a larger proportion of ver
tices that belong to loops. On the other hand, there is a
dency for loops to get connected by loops, i.e., sepa
doubly connected cluster components grow together. Th
for large p almost every cluster will consist of one doub
connected component only.

Results of Fig. 10 show also that the maximum is reach
slightly above the percolation thresholdpc . Then the num-
ber of doubly connected partst rapidly declines until it as-
ymptotically approachest51 for p→1. We argue that this
behavior is caused by one great doubly connected com
nent which occurs first for somep*pc and then gradually
incorporates all other doubly connected parts. In princip
these results do also apply to two-mismatch graphs~see Fig.
11!.

Comparing this with the scenario described above of cl
ter structures, we can thus state that there is a range of va
of p*pc where ~iii ! applies, i.e., clusters are made of o

the

FIG. 10. Mean valuê t& of the resulting large fragments afte
application of the edge-elimination procedure forG9

1 depending on
the occupation probabilityp.

FIG. 11. Mean valuêt& of the resulting great fragments for th
two-mismatch graphsG6

2, G8
2 andG10

2 depending onp. Except for a
shift toward smaller values ofp, the results are similar to those o
one-mismatch graphs.
8-8



l
ly
rs

pi

ro
oi
ly

se
c
th
re
u
an
th

de
ch

th

m
a
ti
t
o
-
re

e

io
th

u
om

-

d
na
-

ng
ce

ch
t-
t
ty
th

gly

the
ion
be
an

tion

old.
te
al-
inal
nal
up

tch

e

s-

ly,

n
lace

tly

a-
if
oop
te.
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great doubly connected component~including several smal
ones! and a set of other loosely bound vertices. According
within this range ofp we define two subsets of great cluste
C, namely, the great doubly connected componentB5C(2)

and the complementary setP5C2B.
As already discussed in Sec. I, the central part of idioty

networks~corresponding to great clustersC) should contain
strongly and weakly connected distinguished subsets. F
the previous analysis it becomes clear that there is a ch
of the only parameterp where bit-string models can exact
reproduce such a situation.

VII. CONCLUSIONS

We investigated statistical properties of a bit-string-ba
model for idiotypic networks and compared typical archite
tures of the network thus defined with axioms and hypo
eses for idiotypic networks from theoretical biology. Befo
introducing randomness we undertook an analysis of the
derlying base graphs to show a major difference from st
dard percolation problems based on the way the size of
system is increased.

Subsequently the expressed antibody repertoire was i
tified with graphs, created by randomly occupying a mat
ing rule defined base structure~base graphs!. Concepts of
percolation theory were applied in order to determine
percolation threshold.

The immune system is a very large, yet finite syste
Consequently, finite size corrections have to be taken in
count. Series expansion techniques allowed the calcula
of two critical exponents~for finite systems and in the limi
d→`) that characterize the scaling behavior. A regime
values for the parameterp.pc has been found where ran
dom graphs consist of many small clusters and one g
connected component. For choicesp*pc our model repro-
duces the peripheral/central part concept for idiotypic n
works.

Translation of the notation of the completeness of id
typic networks into the language of graph theory allowed
determination of an upper thresholdpdensefor the occurrence
of the many small clusters–one great cluster situation. F
thermore, relying on general results of the theory of rand
graphs~for so-called sequences of configuration spaces! we
calculated the~in this case coincident! thresholds for the den
sity (pdense) and connectivity (pconn) properties.

Furthermore, we developed techniques to obtain ad
tional information about the structure of great clusters. A
lyzing random graphs forp*pc great clusters can be decom
posed into two subsets of vertices with different bindi
properties, namely, groups of doubly connected verti
~backbone! and loosely linked vertices~peripheral part of the
great cluster!.

Thus, bit-string models are suited to describe a hierar
of connectivity levels, which really existing idiotypic ne
works are also expected to exhibit. Our results suppor
some extent idealized architectures used in a mean-field
model to describe the dynamics of the central part of
immune system@13#. Unlike other model approaches@8,28–
31# for topologies of idiotypic networks, our simple few
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parametric bit-string model produces a nontrivial seemin
realistic network topology, without assuminga priori distin-
guished vertex groups.

APPENDIX A: RENORMALIZATION GROUP APPROACH

In this Appendix we present a method to approximate
connectivity threshold for one-mismatch graphs. Extens
of the ideas of renormalization group theory could also
applicable to more complicated cases that do not allow
exact treatment.

Our approach is based on the idea of the renormaliza
of small cells@33# which employs the self-similarity of the
system on different length scales at the percolation thresh
A condition to apply this procedure is that an appropria
grouping of sites on the original lattice leads to a renorm
ized lattice with the same symmetry properties as the orig
one. Here, treating not a real space lattice but functio
networks, we adapt the idea of the renormalization gro
theory in the following way. We find a transformationR
which, by grouping of vertices, leads from the one-misma
base graphGd12

1 in dimensiond12 to a graphR(Gd12
1 )

that is equivalent to the base graphGd
1 in dimension d,

R(Gd12
1 ).Gd

1 , thus allowing a systematic reduction of th
degrees of freedom.

If a threshold property appropriately defined for finite sy
tems, namely,pconn(d), converges to a certain value ford
→`, differences betweenpd and pd22 must be small and
will disappear in the limit of infinite systems. Consequent
if a grouping of vertices to supervertices on a graphG yields
a renormalized graphR(G) of the same type, percolatio
thresholds on both graphs will be the same. Thus, we rep
the term symmetry~as it is applied to lattices! by equiva-
lency of graphs.

We encode an arbitrary vertex of the base graphGd12
1 by

(A,b0 ,b1) whereA is a bit chain of lengthd andb0 ,b1 are
single bits. Every vertex onGd12

1 belongs to a unique 4-loop

$(A,b0 ,b1),(Ā,b̄0 ,b1),(A,b̄0 ,b̄1),(Ā,b0 ,b1)% connected by
one-mismatch links. The renormalizationR replaces this
4-loop by the super vertex~A! on R(Gd12

1 ) @of course the

choice of (Ā) leads to identical results#. If two verticesA and
B are connected by an inversion~one-mismatch! link on Gd

1

the vertices of the corresponding 4-loops onGd12
1 are con-

nected by four inversion~one-mismatch! links, too see Fig.
12.

We thus define a renormalized graphR(Gd12
1 ) composed

of the vertices and edges explained above. It follows direc
from our construction thatR(Gd12

1 ) is equivalent toGd
1 .

To describe random graphs we apply the following m
jority rule: a supervertex onGd

1 is considered as occupied
at least two connected vertices of the corresponding 4-l
on Gd12

1 are occupied, i.e., this 4-loop is said to percola
On the basis of this rule we obtain

p854p2~12p!214p3~12p!1p4, ~A1!

wherep8 denotes the~renormalized! probability that vertices
of ~G! are occupied if vertices onG were chosen with prob-
ability p.
8-9
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MARKUS BREDE AND ULRICH BEHN PHYSICAL REVIEW E64 011908
Calculating fixed points of Eq.~A1! we obtainp* 50,
(32

1A5)/2, and 1. Thus, as the only unstable solution in@0,1#
we havep* 5(32A5)/2 as a first approximation for the con
nectivity threshold.

Here one could pose the question whether only 4-lo
are suited as a renormalization cell. Indeed, it is also poss
to summarize successive renormalization steps in to a si
large one, and ordinary hypercubes of even dimensiok
,d form suitable cells as well. On the other hand, conde
ing odd dimensional hypercubes to supervertices does
lead to renormalized graphsR(G) that are equivalent to
other base graphs of the sequence$Gd

1%. Altogether, this
seems to be an effect of differences between even- and
dimensional base graphs~see Sec. II!.

Of course, renormalizing small cells entails some appro
mation. Grouping together vertices and applying a majo
rule to occupy the renormalized vertices, situations can a
where clusters on the original lattice are cut or new clus
are formed@33#.

There are different approaches to improve the approxi
tions involved. One possibility suggested in@34#, which

FIG. 12. Illustration of the renormalization procedure applied
a pair of connected 4-loops onGd12

1 leading to a pair of linked

supervertices onGd
1 . If dH(B,Ā)50 the dotted edges correspond

inversion links, ifdH(B,Ā)51 to one-mismatch links.
an
e
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leads to exact results in the limit of very large cells, is
summarize some elementary cells to one large cell of sizz.
This large cell will then be occupied if all elementary ce
are occupied and connected, i.e., are said to percolate. S
‘‘renormalization faults’’ are essentially due to cell surfa
effects improvements produced by the above method e
nate from the declining surface-volume ratio of large ce
For one-mismatch graphs it holds, however, that the surf
size of a cells(z) depends logarithmically onz, viz. s(z)
'd112 log2z, leading to only slight improvements with in
creasingz.

Using larger elementary cells consisting of two coupl
4-loops we obtain

~p8!25p818p7q124p6q2132p5q3112p4q4, ~A2!

and using four coupled 4-loops yields

~p8!45p16116p15q1112p14q21448p13q311120p12q4

11792p11q511776p10q611008p9q71180p8q8

~A3!

where q512p. As fixed pointsp85p of Eqs. ~A2! and
~A3! we determined numericallyp'0.41 andp'0.39, re-
spectively. The difference of both values frompconn50.5
may be a consequence of the above mentioned slow con
gence.

More interestingly, our renormalization procedure of r
placing hypercubes of dimensionk by supervertices is appli
cable without modifications to ordinary hypercubes as w
This gives an additional argument that the connectiv
thresholds of both sequences of graphs are equal, which
also be verified by evaluating Eq.~25!.
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